extension | φ:Q→Out N | d | ρ | Label | ID |
(C22xD7).1D4 = C23.5D28 | φ: D4/C1 → D4 ⊆ Out C22xD7 | 112 | 8- | (C2^2xD7).1D4 | 448,276 |
(C22xD7).2D4 = D4:4D28 | φ: D4/C1 → D4 ⊆ Out C22xD7 | 56 | 4+ | (C2^2xD7).2D4 | 448,356 |
(C22xD7).3D4 = M4(2):D14 | φ: D4/C1 → D4 ⊆ Out C22xD7 | 112 | 4 | (C2^2xD7).3D4 | 448,359 |
(C22xD7).4D4 = C22:C4:D14 | φ: D4/C1 → D4 ⊆ Out C22xD7 | 112 | 4 | (C2^2xD7).4D4 | 448,587 |
(C22xD7).5D4 = D28:18D4 | φ: D4/C1 → D4 ⊆ Out C22xD7 | 56 | 8+ | (C2^2xD7).5D4 | 448,732 |
(C22xD7).6D4 = D28.39D4 | φ: D4/C1 → D4 ⊆ Out C22xD7 | 112 | 8+ | (C2^2xD7).6D4 | 448,736 |
(C22xD7).7D4 = (C2xDic7):3D4 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).7D4 | 448,206 |
(C22xD7).8D4 = (C2xC4).21D28 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).8D4 | 448,208 |
(C22xD7).9D4 = (C22xD7).9D4 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).9D4 | 448,209 |
(C22xD7).10D4 = D7xC23:C4 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 56 | 8+ | (C2^2xD7).10D4 | 448,277 |
(C22xD7).11D4 = C8:Dic7:C2 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).11D4 | 448,313 |
(C22xD7).12D4 = C7:C8:1D4 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).12D4 | 448,314 |
(C22xD7).13D4 = D4:3D28 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).13D4 | 448,315 |
(C22xD7).14D4 = C7:C8:D4 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).14D4 | 448,316 |
(C22xD7).15D4 = D4.D28 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).15D4 | 448,317 |
(C22xD7).16D4 = C56:1C4:C2 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).16D4 | 448,318 |
(C22xD7).17D4 = Q8.D28 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).17D4 | 448,344 |
(C22xD7).18D4 = D28:4D4 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).18D4 | 448,345 |
(C22xD7).19D4 = C7:(C8:D4) | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).19D4 | 448,346 |
(C22xD7).20D4 = D14:C8.C2 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).20D4 | 448,348 |
(C22xD7).21D4 = (C2xC8).D14 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).21D4 | 448,349 |
(C22xD7).22D4 = C7:C8.D4 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).22D4 | 448,350 |
(C22xD7).23D4 = C42:D14 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 112 | 4 | (C2^2xD7).23D4 | 448,355 |
(C22xD7).24D4 = C56:7D4 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).24D4 | 448,399 |
(C22xD7).25D4 = C4.Q8:D7 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).25D4 | 448,400 |
(C22xD7).26D4 = C28.(C4oD4) | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).26D4 | 448,401 |
(C22xD7).27D4 = C8.2D28 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).27D4 | 448,402 |
(C22xD7).28D4 = C2.D8:D7 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).28D4 | 448,419 |
(C22xD7).29D4 = C8:3D28 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).29D4 | 448,420 |
(C22xD7).30D4 = C2.D8:7D7 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).30D4 | 448,422 |
(C22xD7).31D4 = C24.14D14 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).31D4 | 448,493 |
(C22xD7).32D4 = C23.16D28 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).32D4 | 448,495 |
(C22xD7).33D4 = (C2xC4):3D28 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).33D4 | 448,525 |
(C22xD7).34D4 = (C2xC28).290D4 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).34D4 | 448,527 |
(C22xD7).35D4 = Dic14:D4 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).35D4 | 448,692 |
(C22xD7).36D4 = C56:12D4 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).36D4 | 448,693 |
(C22xD7).37D4 = D28:7D4 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).37D4 | 448,706 |
(C22xD7).38D4 = Dic14.16D4 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).38D4 | 448,707 |
(C22xD7).39D4 = C56:8D4 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).39D4 | 448,708 |
(C22xD7).40D4 = D28.17D4 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).40D4 | 448,721 |
(C22xD7).41D4 = C56.36D4 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 224 | | (C2^2xD7).41D4 | 448,723 |
(C22xD7).42D4 = D8:10D14 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 112 | 4 | (C2^2xD7).42D4 | 448,1221 |
(C22xD7).43D4 = SD16:D14 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 112 | 8- | (C2^2xD7).43D4 | 448,1226 |
(C22xD7).44D4 = D56:C22 | φ: D4/C2 → C22 ⊆ Out C22xD7 | 112 | 8+ | (C2^2xD7).44D4 | 448,1230 |
(C22xD7).45D4 = D14:(C4:C4) | φ: D4/C4 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).45D4 | 448,201 |
(C22xD7).46D4 = D4:2D7:C4 | φ: D4/C4 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).46D4 | 448,306 |
(C22xD7).47D4 = D14:D8 | φ: D4/C4 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).47D4 | 448,309 |
(C22xD7).48D4 = D14:SD16 | φ: D4/C4 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).48D4 | 448,312 |
(C22xD7).49D4 = Q8:2D7:C4 | φ: D4/C4 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).49D4 | 448,338 |
(C22xD7).50D4 = D14:2SD16 | φ: D4/C4 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).50D4 | 448,341 |
(C22xD7).51D4 = D14:Q16 | φ: D4/C4 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).51D4 | 448,347 |
(C22xD7).52D4 = (C8xD7):C4 | φ: D4/C4 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).52D4 | 448,394 |
(C22xD7).53D4 = C8:8D28 | φ: D4/C4 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).53D4 | 448,398 |
(C22xD7).54D4 = C8.27(C4xD7) | φ: D4/C4 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).54D4 | 448,414 |
(C22xD7).55D4 = C8:7D28 | φ: D4/C4 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).55D4 | 448,417 |
(C22xD7).56D4 = D14:2Q16 | φ: D4/C4 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).56D4 | 448,421 |
(C22xD7).57D4 = C4:(D14:C4) | φ: D4/C4 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).57D4 | 448,521 |
(C22xD7).58D4 = C56:6D4 | φ: D4/C4 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).58D4 | 448,691 |
(C22xD7).59D4 = C56:14D4 | φ: D4/C4 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).59D4 | 448,705 |
(C22xD7).60D4 = D14:3Q16 | φ: D4/C4 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).60D4 | 448,722 |
(C22xD7).61D4 = C2xD8:3D7 | φ: D4/C4 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).61D4 | 448,1209 |
(C22xD7).62D4 = C2xSD16:3D7 | φ: D4/C4 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).62D4 | 448,1214 |
(C22xD7).63D4 = C2xQ8.D14 | φ: D4/C4 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).63D4 | 448,1218 |
(C22xD7).64D4 = D7xC4oD8 | φ: D4/C4 → C2 ⊆ Out C22xD7 | 112 | 4 | (C2^2xD7).64D4 | 448,1220 |
(C22xD7).65D4 = C22.58(D4xD7) | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).65D4 | 448,198 |
(C22xD7).66D4 = (C2xC4):9D28 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).66D4 | 448,199 |
(C22xD7).67D4 = D14:C4:C4 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).67D4 | 448,202 |
(C22xD7).68D4 = (D4xD7):C4 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 112 | | (C2^2xD7).68D4 | 448,304 |
(C22xD7).69D4 = D4:(C4xD7) | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).69D4 | 448,305 |
(C22xD7).70D4 = D4:D28 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 112 | | (C2^2xD7).70D4 | 448,307 |
(C22xD7).71D4 = D14.D8 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).71D4 | 448,308 |
(C22xD7).72D4 = D4.6D28 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 112 | | (C2^2xD7).72D4 | 448,310 |
(C22xD7).73D4 = D14.SD16 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).73D4 | 448,311 |
(C22xD7).74D4 = (Q8xD7):C4 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).74D4 | 448,336 |
(C22xD7).75D4 = Q8:(C4xD7) | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).75D4 | 448,337 |
(C22xD7).76D4 = D14.1SD16 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).76D4 | 448,339 |
(C22xD7).77D4 = Q8:2D28 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).77D4 | 448,340 |
(C22xD7).78D4 = D14:4Q16 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).78D4 | 448,342 |
(C22xD7).79D4 = D14.Q16 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).79D4 | 448,343 |
(C22xD7).80D4 = D7xC4wrC2 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 56 | 4 | (C2^2xD7).80D4 | 448,354 |
(C22xD7).81D4 = C8:(C4xD7) | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).81D4 | 448,395 |
(C22xD7).82D4 = D14.2SD16 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).82D4 | 448,396 |
(C22xD7).83D4 = D14.4SD16 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).83D4 | 448,397 |
(C22xD7).84D4 = C56:(C2xC4) | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).84D4 | 448,415 |
(C22xD7).85D4 = D14.5D8 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).85D4 | 448,416 |
(C22xD7).86D4 = D14.2Q16 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).86D4 | 448,418 |
(C22xD7).87D4 = C23.44D28 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 112 | | (C2^2xD7).87D4 | 448,489 |
(C22xD7).88D4 = C24.12D14 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).88D4 | 448,490 |
(C22xD7).89D4 = D14:C4:6C4 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).89D4 | 448,523 |
(C22xD7).90D4 = D28:D4 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 112 | | (C2^2xD7).90D4 | 448,690 |
(C22xD7).91D4 = D14:6SD16 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 112 | | (C2^2xD7).91D4 | 448,703 |
(C22xD7).92D4 = Dic14:7D4 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).92D4 | 448,704 |
(C22xD7).93D4 = D14:5Q16 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).93D4 | 448,720 |
(C22xD7).94D4 = C2xD14.D4 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).94D4 | 448,941 |
(C22xD7).95D4 = C2xD14.5D4 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).95D4 | 448,958 |
(C22xD7).96D4 = D7xC22.D4 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 112 | | (C2^2xD7).96D4 | 448,1105 |
(C22xD7).97D4 = C2xD8:D7 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 112 | | (C2^2xD7).97D4 | 448,1208 |
(C22xD7).98D4 = C2xD56:C2 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 112 | | (C2^2xD7).98D4 | 448,1212 |
(C22xD7).99D4 = C2xSD16:D7 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).99D4 | 448,1213 |
(C22xD7).100D4 = C2xQ16:D7 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 224 | | (C2^2xD7).100D4 | 448,1217 |
(C22xD7).101D4 = D7xC8:C22 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 56 | 8+ | (C2^2xD7).101D4 | 448,1225 |
(C22xD7).102D4 = D7xC8.C22 | φ: D4/C22 → C2 ⊆ Out C22xD7 | 112 | 8- | (C2^2xD7).102D4 | 448,1229 |
(C22xD7).103D4 = D7xC2.C42 | φ: trivial image | 224 | | (C2^2xD7).103D4 | 448,197 |
(C22xD7).104D4 = D7xD4:C4 | φ: trivial image | 112 | | (C2^2xD7).104D4 | 448,303 |
(C22xD7).105D4 = D7xQ8:C4 | φ: trivial image | 224 | | (C2^2xD7).105D4 | 448,335 |
(C22xD7).106D4 = D7xC4.Q8 | φ: trivial image | 224 | | (C2^2xD7).106D4 | 448,393 |
(C22xD7).107D4 = D7xC2.D8 | φ: trivial image | 224 | | (C2^2xD7).107D4 | 448,413 |
(C22xD7).108D4 = C2xD7xC22:C4 | φ: trivial image | 112 | | (C2^2xD7).108D4 | 448,937 |
(C22xD7).109D4 = C2xD7xC4:C4 | φ: trivial image | 224 | | (C2^2xD7).109D4 | 448,954 |
(C22xD7).110D4 = C2xD7xD8 | φ: trivial image | 112 | | (C2^2xD7).110D4 | 448,1207 |
(C22xD7).111D4 = C2xD7xSD16 | φ: trivial image | 112 | | (C2^2xD7).111D4 | 448,1211 |
(C22xD7).112D4 = C2xD7xQ16 | φ: trivial image | 224 | | (C2^2xD7).112D4 | 448,1216 |